Dose Metrics#

Open In Colab

In this example notebook we will compute Dose Volume Histograms (DVH) for our RTDOSE objects across structures found in RTSTRUCT objects in our dataset. We use HNSCC data from the Cancer Imaging Archive which has already been converted using PyDicer for demonstration purposes.

[1]:
try:
    from pydicer import PyDicer
except ImportError:
    !pip install pydicer
    from pydicer import PyDicer

from pathlib import Path

from pydicer.utils import fetch_converted_test_data

Fetch data#

HNSCC data prepared for this example are downloaded and stored into a testdata_hnscc directory. We will use this for our PyDicer working directory.

[2]:
working_directory = fetch_converted_test_data("./testdata_hnscc", dataset="HNSCC")
Working directory %s aready exists, won't download test data.

Initialise PyDicer object#

Using the working directory containing the test data.

[3]:
pydicer = PyDicer(working_directory)

Compute DVH#

Before we can extract dose metrics, we must compute Dose Volume Histograms for all dose objects and structure sets. This is done using the compute_dvh function.

[4]:
pydicer.analyse.compute_dvh()
100%|██████████| 4/4 [00:45<00:00, 11.37s/objects, Compute DVH]

Inspect DVH#

DVHs computed are stored in the respective dose object directories on the file system. Inspect a dose object directory (e.g. testdata_hnscc/data/HNSCC-01-0019/doses/309e1a). Here you will find a .png file which plots the DVH for each of the linked structures. In addition a .csv file stores the raw DVH values.

The DVHs can for this dataset can be loaded into a pandas DataFrame with the get_all_dvhs_for_dataset function.

[5]:
df_dvh = pydicer.analyse.get_all_dvhs_for_dataset()
df_dvh.head()
[5]:
patient struct_hash dose_hash label cc mean 0.0 0.1 0.2 0.3 ... 77.2 77.3 77.4 77.5 77.6 77.7 77.8 77.9 78.0 78.1
0 HNSCC-01-0019 7cdcd9 309e1a +1 4640.553474 29.679710 1.0 0.837845 0.835239 0.83267 ... 0.000028 0.000020 0.000009 0.000002 6.165262e-07 0.0 0.0 0.0 0.0 0.0
1 HNSCC-01-0019 7cdcd9 309e1a -.3 2689.948082 43.784290 1.0 1.000000 1.000000 1.00000 ... 0.000048 0.000035 0.000016 0.000004 1.063598e-06 0.0 0.0 0.0 0.0 0.0
2 HNSCC-01-0019 7cdcd9 309e1a Brain 549.576759 24.043829 1.0 1.000000 1.000000 1.00000 ... 0.000000 0.000000 0.000000 0.000000 0.000000e+00 0.0 0.0 0.0 0.0 0.0
3 HNSCC-01-0019 7cdcd9 309e1a Brainstem 47.636032 39.998913 1.0 1.000000 1.000000 1.00000 ... 0.000000 0.000000 0.000000 0.000000 0.000000e+00 0.0 0.0 0.0 0.0 0.0
4 HNSCC-01-0019 7cdcd9 309e1a CTV63 467.602730 71.274086 1.0 1.000000 1.000000 1.00000 ... 0.000275 0.000202 0.000092 0.000024 6.118491e-06 0.0 0.0 0.0 0.0 0.0

5 rows × 788 columns

Compute Dose Metrics#

The compute_dose_metrics function in the analyse module can compute D, V and Dcc metrics. Specify the points at which to compute those values. For example, the following cell computes the D95, D50, V5 and Dcc10.

[6]:
df_dose_metrics = pydicer.analyse.compute_dose_metrics(
    d_point=[95, 50],
    v_point=[5],
    d_cc_point=[10]
)
df_dose_metrics.head()
[6]:
patient struct_hash dose_hash label cc mean D95 D50 V5 D10cc
0 HNSCC-01-0019 7cdcd9 309e1a +1 4640.553474 29.679710 0.030835 25.358893 3558.228493 75.501190
1 HNSCC-01-0019 7cdcd9 309e1a -.3 2689.948082 43.784290 11.384142 43.358867 2668.971062 75.501190
2 HNSCC-01-0019 7cdcd9 309e1a Brain 549.576759 24.043829 7.657684 22.339093 544.220924 56.311918
3 HNSCC-01-0019 7cdcd9 309e1a Brainstem 47.636032 39.998913 28.935185 39.202222 47.636032 46.232806
4 HNSCC-01-0019 7cdcd9 309e1a CTV63 467.602730 71.274086 66.177108 71.589748 467.602730 75.494366
[ ]: